Memory Basics

- **RAM**: Random Access Memory
 - Historically defined as memory array with individual bit access
 - Refers to memory with both Read and Write capabilities

- **ROM**: Read Only Memory
 - No capabilities for “online” memory Write operations
 - Write typically requires high voltages or erasing by UV light

- **Volatility of Memory**
 - Volatile memory loses data over time or when power is removed
 - RAM is volatile
 - Non-volatile memory stores data even when power is removed
 - ROM is non-volatile

- **Static vs. Dynamic Memory**
 - Static: holds data as long as power is applied (SRAM)
 - Dynamic: will lose data unless refreshed periodically (DRAM)

SRAM/DRAM Basics

- **SRAM**: Static Random Access Memory
 - Static: holds data as long as power is applied
 - Volatile: can not hold data if power is removed
 - 3 Operation States: hold, write, read
 - Basic 6T (6 transistor) SRAM Cell
 - Bistable (cross-coupled) INVs for storage
 - Access transistors MAL & MAR
 - Word line, WL, controls access
 - WL = 0 (hold) = 1 (read/write)

- **DRAM**: Dynamic Random Access Memory
 - Dynamic: must be refreshed periodically
 - Volatile: loses data when power is removed
 - 1T DRAM Cell
 - Single access transistor; storage capacitor
 - Control input: word line (WL); data I/O: bit line

- **DRAM to SRAM Comparison**
 - DRAM is smaller & less expensive per bit
 - SRAM is faster
 - DRAM requires more peripheral circuitry
ROM/PROM Basics

- **ROM**: Read Only Memory
 - no capabilities for “online” memory Write operations
 - data programmed
 - during fabrication: ROM
 - with high voltages: PROM
 - by control logic: PLA
 - Non-volatile: data stored even when power is removed

- **PROM**: Programmable Read Only Memory
 - programmable by user -using special program tools/modes
 - read only memory -during normal use
 - non-volatile
 - Read Operation
 - like any ROM: address bits select output bit combinations
 - Write Operation
 - typically requires high voltage (~15V) control inputs to set data
 - stores charge to floating gate (see figure) to set to Hi or Low
 - Erase Operation
 - to change data
 - EPROM: erasable PROM: uses UV light to reset all bits
 - EEPROM: electrically-erasable PROM, erase with control voltage

Comparison of Memory Types

- **DRAM**
 - very high density → cheap data cache in computers
 - must be periodically refreshed → slower than SRAM
 - volatile; no good for program (long term) storage

- **SRAM** (basically a Latch)
 - fastest type of memory
 - low density → more expensive
 - generally used in small amounts (L2 cache) or expensive servers

- **EEPROM**
 - slow/complex to write → not good for fast cache
 - non-volatile; best choice for program memory

- **ROM**
 - hardware coded data; rarely used except for bootup code

- **Register** (flip flop)
 - functionally similar to SRAM but less dense (and thus expensive)
 - reserved for data manipulation applications
Memory Arrays

- N x n array of 1-bit cells
 - n = byte width: 8, 16, 32, etc.
 - N = number of bytes
 - m = number of address bits
 - max N = 2^m

Array I/O
- data (in and out)
 - D_{n-1} - D_0
- address
 - A_{m-1} - A_0
- control
 - varies with design
 - WE = write enable (assert low)
 - WE=1=read, WE=0=write
 - En = block enable (assert low)
 - used as chip enable (CE) for an SRAM chip

Memory Overview

- varies with design
- WE = write enable (assert low)
 - WE=1=read, WE=0=write
- En = block enable (assert low)
 - used as chip enable (CE) for an SRAM chip

Memory Array Addressing

- Standard Memory Addressing Scheme
 - m address bits are divided into x row bits and y column bits (x+y=m)
 - address bits are encoded so that 2^m = N
 - array physically organized with both vertical and horizontal stacks of bytes

Example byte:
- one word in an 8b-wide EPROM